ECITINDU MAKE IT BIG!

All The Bes

Jan Your

Exams

Our 6th sense says you will pass the exam.

www.learndu.in

This question paper contains 19 printed pages]

Roll N	0.		
S. No. of Question Paper	:	3547	
Unique Paper Code	:	12271102	27
Name of the Paper	:	Mathematical Methods for Economics—I	
Name of the Course	•:	B.A. (Hons.) Economics	
Semester	:	I	

Duration : 3 Hours

Maximum Marks: 75

 (Write your Roll No. on the top immediately on receipt of this question paper.)
 Note :-- Answers may be written either in English or in Hindi; but the same medium should be used throughout the paper.

टिप्पणी :---इस प्रश्न--पत्र का उत्तर अंग्रेजी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए।

> There are *five* questions in all. All questions are compulsory.

A simple calculator can be used.

कुल पाँच प्रश्न हैं।

सभी प्रश्न अनिवार्य हैं।

साधारण कैलकुलेटर का उपयोग किया जा सकता है।

P.T.O.

(2)

😞 learndu.in

2×4=8

- 1. Answer any two of the following :
 - (A) Let f(x) be a function with domain [-2, 3] and range [0, 8]. What are the domains and ranges of the following functions ?
 - (*i*) -f(-x 1)
 - (*ii*) 4 $f^{-1}(-x) + 1$.
 - (B) The given figure shows the graph of the function :

$$y = g(x) = px^2 + qx + r.$$

(i) Check which of the constants p, q and r are

 $y = g(x) = px^2 + qx + r$

(ii) The graph is symmetric about the line x = k. Find k.

- (i) P : The series $\sum_{n=1}^{\infty} a_n$ is convergent.
 - Q: $\lim_{n\to\infty} a_n = 0.$
- (*ii*) P : $x^2 > 16$

Q: x > 4

निम्नलिखित में से किन्हीं दो के उत्तर दीजिए :

- (A) मान लीजिए कि f(x), परास (domain) [-2, 3] व परिसर (range) [0, 8] वाला एक फलन है। निम्नलिखित फलनों के क्या परास व परिसर हैं ?
 - (*i*) -f(-x 1)

(*ii*) 4 $f^{-1}(-x) + 1$.

(B) निम्नलिखित चित्र फलन $y = g(x) = px^2 + qx + r$ का आरेख दर्शाता है :

- (ii) यह आरेख रेखा x = k के प्रति सममित (symmetric)
 है। k का मान ज्ञात कीजिए।
- (C) निम्नलिखित कथनों हेतु तार्किक निष्कर्ष (logical conclusion) की दिशा (P \rightarrow Q या Q \rightarrow P या P \leftrightarrow Q) ज्ञात कीजिए :
 - (i) P : श्रेणी $\sum_{n=1}^{\infty} a_n$ अभिसारी (convergent) है।

 $Q : \lim_{n \to \infty} a_n = 0.$

(*ii*) P : $x^2 > 16$

Q: x > 4

(5)

Answer any three of the following :

2.

(A) Find the equations of the tangent lines to the curve

$$y = \frac{x-1}{x+1}$$
 parallel to the line $x - 2y = 2$.

(B) Find the asymptotes of the following functions :

$$(i) \quad y = e^{\frac{1}{1+x}}$$

$$(ii) \quad y = \frac{\sqrt{1+x}}{x-1}.$$

(C) (i) Evaluate the following limit $\lim_{x\to 0} \frac{e^{x+1} - e^{x-1}}{x^2}$.

- (*ii*) Consider the infinite series $1 + \left(\frac{2x}{3}\right) + \left(\frac{2x}{3}\right)^2 + \left(\frac{2x}{3}\right)^3 + \dots$ For what values of x does the series converge ? Find the sum of the series if x = 1.2.
- (D) Approximate the function $f(x) = x^{1/3}$ by a Taylor polynomial of degree 2 at $x_0 = 8$. Use it to find an approximate value of 9^{1/3}. Find an upper bound for the error of approximation corresponding to the result obtained.

P.T.O.

निम्नलिखित में से किन्हीं तीन के उत्तर िटिवrndu.in (A) वक्र $y = \frac{x-1}{x+1}$ की रेखा x - 2y = 2 के समानान्तर (parallel) स्पर्श रेखाओं (tangents) के समीकरण ज्ञात कीजिए। (B) निम्नलिखित फलनों की अनन्तस्पर्शियाँ (asymptotes) ज्ञात

कोजिए :

- $(i) \qquad y = e^{\frac{1}{1+x}}$
- (*ii*) $y = \frac{\sqrt{1+x^2}}{x-1}$.
- (C) (i) सीमा $\lim_{x\to 0} \frac{e^{x+1} e^{x-1}}{x^2}$ का मान ज्ञात कीजिए। (ii) अनन्त श्रेणी $1 + \left(\frac{2x}{3}\right) + \left(\frac{2x}{3}\right)^2 + \left(\frac{2x}{3}\right)^3 + \dots$ पर विचार कीजिए। x के किन मानों हेतु यह श्रेणी अभिसृत (converge) होती है ? यदि x = 1.2 हो

8

तो श्रेणी का योगफल ज्ञात कीजिए।

(D) फलन $f(x) = x^{1/3}$ को $x_0 = 8$ पर कोटि (degree) 2 के टेलर बहुपद (Taylor polynomial) से सन्निकटित (approximate) कीजिए। इसकी सहायता से $9^{1/3}$ का सन्निकट मान (approximate value) ज्ञात कीजिए। प्राप्त परिणाम के संगत सन्निकटन त्रुटि (error of approximation) हेतु ऊपरी सीमा (upper bond) ज्ञात कीजिए।

- (D) (i) Find the expression for elasticity of $h \bigotimes learndu.in$ in terms of E_f and E_g , the elasticities of f(x) and g(x) w.r.t x respectively.
 - (*ii*) Prove that $f(x) = e^{\sqrt{x}} 3$ has a unique solution in the interval (1, 4).
 - (E) (a) Suppose that the interest rate 'r' such that the present value of receiving Rs. A_2 in t_2 years from now is the same as receiving Rs. A_1 in t_1 years from now, given that $t_2 > t_1$. Assuming interest is compounded annually :
 - (i) Show that $A_2 > A_1$
 - (*ii*) Show that the present value of receiving Rs. A_2 , $(t_2 + k)$ years from now is equal to the present value of receiving Rs. A_1 , $(t_1 + k)$ years from now.
 - (b) The equation $3xe^{xy^2} 2y = 3x^2 + y^2$ defines y as a differentiable function of x about the point (x, y) = (1, 0). What is the linear approximation to y about x?

निम्नलिखित में से किन्हीं चार के उत्तर learndu.in (A) फलन g(x) का आरेख बनाइए तथा इसकी x = 1

x = -1 पर सांतत्य (continuity) हेतु जाँच कोजिए :

$$g(x) = \begin{cases} 2x - 1 & \text{if } x < -1 \\ x^2 + 1 & \text{if } -1 \le x \le 1 \\ x + 1 & \text{if } x > 1 \end{cases}$$

(B) (i) \overline{u} $\sqrt{x^2 + 1} = \log(x + \sqrt{x^2 + 1})$, \overline{e} , \overline{n} \overline{c} \overline{s}

किः

(a)
$$(x^2+1)\frac{dy}{dx} + xy - 1 = 0$$

(b)
$$(x^2+1)\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + y = 0$$

(*ii*) फलन $f(x) = xe^{-x}$. के मोड़ बिन्दुओं (points of inflection) को ज्ञात कीजिए।

(C) (i) मान लीजिए कि
$$f[0, 2]$$
 पर दो बार अवकलनीय
(differentiable) है। दर्शाइए कि यदि $f(0) = 0$,
 $f(1) = 2, f(2) = 4$, तो एक ऐसा $x_0 \in (0, 2)$ है
जिसके लिए $f''(x) = 0$ ।

(ii) फलन
$$y = |x^2 - 1|$$
 का आरेख बनाइए।
P.T.O.

learndu.in

4.

(ii) सिद्ध कीजिए कि $f(x) = e^{\sqrt{x}} - 3$ का अन्तराल

(1, 4) में एक अद्वितीय (unique) हल है। (E) (a) मान लीजिए कि 'r' वह ब्याज दर है जिस पर अब से t_2 वर्षों में प्राप्त होने वाली A_2 रु. की राशि का वर्तमान मूल्य (present value) अब से t_1 वर्षों में प्राप्त होने वाली A_1 रु. की राशि के वर्तमान मूल्य के बराबर है, जहाँ $t_2 > t_1$ यह मानते हुए कि ब्याज में वार्षिक चक्रवृद्धि (Compounded annually) होती है :

- (i) दर्शाइए कि $A_2 > A_1$
- (ii) दर्शाइए कि अब से (t₂ + k) वर्षों में प्राप्त होने वाले A₂ रु. का वर्तमान मूल्य अब से (t₁ + k) वर्षों में प्राप्त होने वाले A₁ रु. के वर्तमान मूल्य के बराबर होगा।

(11)

(b) समीकरण $3xe^{xy^2} - 2y = 3x^2 + y^2$, y को बिन्दु (x, y) = (1, 0) के आस-पास x के अवकलनीय फलन के रूप में परिभाषित करता है। y का x के आस-पास रेखीय सन्निकटन (linear approximation) क्या है ?

4. Answer any *two* of the following :
$$2 \times 7.5 = 15$$

(A) (i) For
$$f(x) = 3x(x + 4)^{2/3}$$
 find the global extreme
points on the interval [-5, -1].

(ii) If f is a one-to-one twice differentiable function

with inverse g, show that $g''(x) = -\frac{f''(g(x))}{(f'(g(x))^3)}$.

Show that if f is increasing and concave its inverse is convex.

(B) (i) Show that the function $f(x) = ax^2 + bx + c$ is concave if $a \le 0$ and convex if $a \ge 0$ without using derivatives.

(*ii*) Let
$$f(x) = \frac{e^{2x}}{4 + e^{3x}}$$
. Find the intervals on which

the function is increasing and/or decreasing.

(i) The curve C_1 passes through the or \bigcirc learndu.in (C) x-y plane and its gradient is given by $\frac{dy}{dx} = x(1-x^2)e^{-x^2}$. Find its stationary points and classify them as maximum or minimum points. (ii) A coin and stamp dealer estimates that the value of V(t) of his collection (in lakhs of rupees) increases over time according to the following: function $V(t) = 1000e^{\sqrt{\frac{1}{4}}}$. If rate of interest is 8% compounded annually, find optimal time t^* for the coin and stamp dealer to sell his collection such that the present value of the collection is maximised (second order condition for optimum need not be verified). How does a change in the discount rate change the optimal time t^* ?

निम्नलिखित में से किन्हीं दो के उत्तर 😞learndu.in

- (A) (i) $f(x) = 3x(x + 4)^{2/3}$ हेतु अन्तराल [-5, -1] में वैश्विक (global) चरम बिन्दु (extreme points) ज्ञात कीजिए।
 - (ii) यदि f एक-से-एक (one-to-one), दो बार अवकलनीय फलन है जिसका प्रतिलोम (inverse)
 - g है, तो दर्शाइए कि $g''(x) = -\frac{f''(g(x))}{(f'(g(x))^3}$ ।
 - दशाईए कि यदि f वर्द्धमान (increasing) तथा अवतल (concave) है तो इसका प्रतिलोम उत्तल (convex) है।
- (B) (*i*) बिना अवकलजों की सहायता के दर्शाइए कि फलन $f(x) = ax^2 + bx + c$ अवतल है यदि $a \le 0$ तथा उत्तल है यदि $a \ge 0$.
 - (*ii*) मान लीजिए कि $f(x) = \frac{e^{2x}}{4 + e^{3x}}$ । वे अन्तराल ज्ञात कीजिए जिनमें यह फलन वर्द्धमान (increasing) तथा/अथवा ह्यसमान (decreasing) है।
- (C) (i) वक्र $C_1 x y$ समतल में मूल बिन्दु (origin) से गुजरता है तथा इसका ढाल (gradient) $\frac{dy}{dx} = x(1-x^2)e^{-x^2}$ है।

3347

इसके स्थिर बिन्दुओं (stationary points) 😞 learndu.in कीजिए तथा उन्हें उच्चिष्ठ (maximum) या निम्निष्ठ (minimum) के रूप में वर्गीकृत कीजिए। (ii) सिक्कों व डाक टिकटों के एक व्यापारी का आकलन है कि उसके संग्रह का मूल्य V(t) (लाख रुपयों में) समय के साथ फलन $V(t) = 1000e^{\sqrt{\frac{1}{4}}}$ के अनुसार बढ़ता है। यदि ब्याज दर 8% है, वार्षिक चक्रवृद्धि के साथ, तो इस व्यापारी के लिए अपने संग्रह को बेचने का इष्टतम (optimal) समय 1* ज्ञात कीजिए जिस पर इसके संग्रह का वर्तमान मूल्य अधिकतम हो (इष्टतम हेतु द्वितीय क्रम की शर्त को सत्यापित करने की आवश्यकता नहीं है)। बट्टे की दर (discount rate) में परिवर्तन इष्टतम समय ।* को किस प्रकार परिवर्तित करता हे ?

34

Answer any four of the following :

5.

- (A) (i) Show that for any two $n \times n$ matrices A and
 - B, tr(AB) = tr(BA), where tr(A) denotes the trace

😞 learndu.in

- of a $n \times n$ matrix A.
- (ii) Find the rank of the following matrix for all values

of the parameter λ :

$$\begin{pmatrix} 1 & 2 & 4 \\ 3 & 5 & 7-\lambda \\ 2 & \lambda & -6 \end{pmatrix}.$$

(B) (i) Solve the following system of equations :

X - Y + Z = 0

X + 2Y - Z = 0

2X + Y + 3Z = 0

(*ii*) What are degrees of freedom ? Determine the number of degrees of freedom of the above system

of equations.

- (C) Given that {u, v, w} is a linearly independent clearndu.in vectors in some vector space V, prove that :
 - (i) the set $\{u, v\}$ is linearly independent.
 - (ii) the set $\{u, u + v\}$ is linearly independent.
 - (iii) the set $\{u + v, v + w\}$ is linearly independent.
- (D) Consider the following system of equations :

 $-m_1x + y = b_1$

 $-m_2 x + y = b_2$

- (i) Prove that if $m_1 \neq m_2$, then the system of equations has exactly one solution. Find the solution.
- (ii) Suppose that $m_1 = m_2$. Then under what conditions will the system of equations be consistent ?

(E

- (E) (i) Let v be any vector of length 3. Let A = (v, 2v, 3v)be the 3 × 3 matrix with columns v, 2v, 3v. Prove that A is singular.
 - (ii) Find equation of the line formed at intersections of the two planes :

X - 5Y + 3Z = 11 and -3X + 2Y - 2Z = -7.

निम्नलिखित में से किन्हीं चार के उत्तर दीजिए :

- (A) (i) दर्शाइए कि किन्हीं दो n × n मैट्रिक्स A व B हेतु, tr(AB) = tr(BA), जहाँ tr(A), n × n मैट्रिक्स A के ट्रेस (trace) को व्यक्त करता है।
 - (ii) प्राचल (parameter) λ के सभी मानों हेतु निम्नलिखित
 मैट्रिक्स की कोटि (rank) ज्ञात कीजिए :

$$\begin{pmatrix} 1 & 2 & 4 \\ 3 & 5 & 7-\lambda \\ 2 & \lambda & -6 \end{pmatrix}.$$

(B) (i) निम्नलिखित समीकरण निकाय (system of equations)
 को हल कीजिए :

$$X - Y + Z = 0$$

$$X + 2Y - Z = 0$$

2X + Y + 3Z = 0

- (ii) स्वातन्त्र्य कोटियाँ (degrees of freedom) क्या होती हैं ? उपर्युक्त समीकरण निकाय के clearndu.in कोटियों की संख्या ज्ञात कीजिए।
 (C) यदि यह दिया हुआ है कि {u, v, w} किसी सदिश समष्टि (vector space) V में रैखिकत: स्वतन्त्र (linearly independent) सदिशों (vectors) का एक समुच्चय है तो सिद्ध कीजिए कि :
 - (i) समुच्चय {u, v} रैखिकत: स्वतन्त्र है।
 - (ii) समुच्चय {u, u + v} रैखिकत: स्वतन्त्र है।
 - (iii) समुच्चय {u + v, v + w} रैखिकत: स्वतन्त्र है।
 (D) निम्नलिखित समीकरण निकाय पर विचार कीजिए :

$$-m_1 x + y = b_1$$

$$-m_2 x + y = b_2$$

 (i) दर्शाइए कि यदि m₁ ≠ m₂, तो समीकरण निकाय का ठीक एक हल है₁। इस हल को ज्ञांत कीजिए।

- (19)
- े learndu.in (*ii*) दर्शाइए कि यदि $m_1 = m_2$ तो किन शर्तों के अधीन यह समीकरण निकाय संगत (consistent) होगा ?

.

- (E) (i) मान लीजिए कि v, लम्बाई 3 का कोई सदिश है। मान लीजिए कि A = (v, 2v, 3v) एक 3 × 3 मैट्रिक्स है जिसके स्तम्भ v, 2v, 3v हैं। सिद्ध कीजिए कि
 - A विलक्षण (singular) है।
 - (ii) समतलों X 5Y + 3Z = 11 = -3X + 2Y- 2Z = -7 के प्रतिच्छेदन (intersection) पर निर्मित रेखा का समीकरण ज्ञात कीजिए।

(2)

Join Us For University Updates

0

11-UNIVERSITYROAD

Learn DU

in Learn DU